วันเสาร์ที่ 22 กุมภาพันธ์ พ.ศ. 2563

Raspberry pi Smart cam with Intel Neural Compute Stick


Raspberry pi Smart cam with Intel Neural Compute Stick

Intel Neural Compute Stick + OpenVINO Version


System Diagram

System Requirements


Hardware
·     Raspberry Pi Board (4B , 3B+)
·     Intel Neural Compute Stick ( V1 or V2 )
·     Pi Camera ( V1 or V2 ) or USB cam
·     SD Card 32GB
·     5V DC. 2A Power Supply

Software
·     OS Raspbien 10 ( Buster )
·     Python 3.7.3
·     OpenVINO Toolkit 2019.R3
·     OpenCV 4.0.0
·     Flask 1.0.2

·
     LINE Notify 0.1.4


Detect up to 12 FPS. on Pi camara V2




Setting
















Report  ( Save to database )




LINE Notify





Raspberry pi Smart Cam AI kit. ( Include Full Source Code in SD card )

  1.       Raspberry pi 4B ( 1 GB ) + Case
  2.       SDcard 32 GB. ( Software installed )
  3.       5V DC. 2A Power Supply
Option
  • USB Webcam Model Logitech C270 
  • Intel Neural Compute Stick2 
If You want Raspberry pi AI Kit. Please contact email amphancm@gmail.com 
 


UPDATE  ( 2020 APR )

Select time to Line Notification




Reference

Install OpenVINO™ toolkit for Raspbian* OS

Object Detection SSD Python* Demo, Async API performance showcase
https://docs.openvinotoolkit.org/latest/_demos_python_demos_object_detection_demo_ssd_async_README.html



วันอาทิตย์ที่ 2 กุมภาพันธ์ พ.ศ. 2563

Raspberry pi Smart cam AI kit with Pi Cam



Raspberry pi Smart cam AI kit with Pi Cam or USB cam

TensorFlow-lite Version then no need intel Neural Compute Stick yet.


System Diagram

System Requirements


Hardware
·     Raspberry Pi Board (4B , 3B+)
·     Pi Camera ( V1 or V2 ) or USB cam
·     SD Card 32GB
·     5V DC. 2A Power Supply
Software
·     OS Raspbien 10 ( Buster )
·     Python 3.7.3
·     Tensorflow lite 1.14.0
·     OpenCV 4.0.0

Machine Learning Model : MobileNet SSD V2 Quantised


Main Page ( Home )



Report Page
Setting Page

Set WiFi
Source Code ( Python )




















Raspberry pi Smart Cam AI kit. ( Include Full Source Code in SD card )

  1.       Raspberry pi 4B ( 1 GB ) + Case
  2.       SDcard 32 GB. ( Software installed )
  3.       5V DC. 2A Power Supply
Option
  • USB Webcam Model Logitech C270 
  • Intel Neural Compute Stick2 
If You want Raspberry pi AI Kit. Please contact email amphancm@gmail.com 


Reference

Install Tensorflow on Raspberry pi

Tensorflow Model Zoo


How to Run TensorFlow Lite Object Detection

วันศุกร์ที่ 24 มกราคม พ.ศ. 2563

Raspberry pi TensorFlow-lite Object detection




Raspberry pi TensorFlow-lite Object detection

How to use TensorFlow Lite object detection models on the Raspberry Pi.



TensorFlow Lite is an optimized framework for deploying lightweight deep learning models on resource-constrained edge devices. TensorFlow Lite models have faster inference time and require less processing power, so they can be used to obtain faster performance in realtime applications.


  

System Requirements

Hardware
·     Raspberry Pi Board (4B , 3B+)
·     IP Camera, USB Camera or Pi Camera
·     SD Card 32GB
·     5V DC. 2A Power Supply

Software
·     OS Raspbien 10 ( buster )
·     Python 3.7.2
·     Tensorflow lite 1.14.0
·     OpenCV 4.0.0

Machine Learning Model : MobileNet SSD V2 Quantised


 

Source Code
https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi


Reference

Install Tensorflow on Raspberry pi
https://www.tensorflow.org/install/source_rpi

Tensorflow Model Zoo
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md


How to Run TensorFlow Lite Object Detection

วันอังคารที่ 10 กันยายน พ.ศ. 2562

People tracking and counting with Raspberry pi 4 and Intel neural compute stick



People tracking and counting with Raspberry pi 4 and Intel neural compute stick

or Pedestrian Tracker


Hardware

 Raspberry pi 4B ( 1GB )
 Intel Neural Compute Stick 2
 32GB SD card

Software

 Raspbien 10 ( buster )
 OpenVINO toolkit 2019 R1
 OpenCV 4.0.0
 Code C/C++
 Model : Person-detection-retail-0013
 Model : Person-reidentification-0031
 Video MP4 768 x 432 12 fps


 


What is Intel Neural Compute Stick and OpenVINO?


Pedestrian Tracker C++ Demo
This demo showcases Pedestrian Tracking scenario: it reads frames from an input video sequence, detects pedestrians in the frames, and builds trajectories of movement of the pedestrians in a frame-by-frame manner. You can use a set of the following pre-trained models with the demo:
  • person-detection-retail-0013, which is the primary detection network for finding pedestrians
  • person-reidentification-retail-0031, which is the network that is executed on top of the results from inference of the first network and makes reidentification of the pedestrians
Source Code



Reference

Install the Intel® Distribution of OpenVINO™ Toolkit for Raspbian* OS

Pretrained Models

Inference Engine Samples 

OpenVINO, OpenCV, and Movidius NCS on the Raspberry Pi