Raspberry pi Object Detection with Intel Neural Compute Stick and OpenVINO
This project showcases Object Detection on edge device.
We use Raspberry pi 4B board with Intel NCS ( Neural Compute Stick ) and OpenVINO Library and Source code from Intel AI.
Hardware
· Raspberry Pi Board (4B )
· Intel Neural Compute Stick 2
· SD Card 32GB
· 5V DC. 2A Power Supply
Software
· OS Raspbien 10 ( Buster )
· Python 3.7.3
· OpenVINO Toolkit 2019.R3
· OpenCV 4.0.0
Machine Learning Object Detection Model : Mobilenet SSD V2
Run Python Code ( Async Mode )
This and other performance implications and tips for the Async API are covered in the Optimization Guide.
Other demo objectives are:
Video as input support via OpenCV*
Visualization of the resulting bounding boxes and text labels (from the
.labels
file) or class number (if no file is provided)
Video Test : 960x540 pixels
Total frame : 301 frames
Total Inference time : 12.44 sec
Average performance : 24.20 fps
Run Python Code ( Sync Mode )
Total frame : 301 frames
Total Inference time : 24.96 sec
Average performance : 12.06 fps
OpenVINO Toolkit
Comparison
YouTube Video
Reference
Raspberry pi OpenVINO with Intel Movidius ( Neural Compute Stick )
Install OpenVINO™ toolkit for Raspbian* OS
https://docs.openvino.ai/latest/openvino_docs_install_guides_installing_openvino_raspbian.html
Object Detection Python* Demo
https://docs.openvino.ai/latest/omz_demos_object_detection_demo_python.html
Model ( SSD MobileNet )
https://docs.openvino.ai/latest/omz_models_model_ssd_mobilenet_v1_coco.html
https://docs.openvino.ai/latest/omz_models_model_ssdlite_mobilenet_v2.html
OpenVINO Optimization
https://docs.openvino.ai/latest/openvino_docs_optimization_guide_dldt_optimization_guide.html